Планирование составлено на основе программы для общеобразовательных учреждений: Математика. 5-11 классы Алгебра 7-9- классы. Алгебра и начала математического анализа. 10-11 классы / авт.-сост. И.И. Зубарева, А.Г. Мордкович. – М.: Мнемозина, 2007, рекомендованная Департаментом образовательных программ и стандартов общего образования МО РФ

Учитель Сапрыкина Л.И.

Учебник

- 1-2. А.Г.Мордкович, П.В.Семенов «Алгебра и начала анализа», Часть 1, Учебник;
- 3-4. А.Г.Мордкович, Л.О.Денищева, Л.И.Звавич, Т.А.Корешкова, Т.Н.Мишустина, А.Р.Рязановский, П.В.Семенов. «Алгебра и начала анализа 10», Часть 2, Задачник для общеобразовательных учреждений (профильный уровень);
- 5. А.Г.Мордкович «Алгебра и начала анализа 10-11», Методическое пособие для учителя.
- 6-7. Л.А.Александрова «Алгебра и начала анализа 10 (11)», Самостоятельные работы.
- 8-9. Л.О.Денищева, Т.А.Корешкова «Алгебра и начала анализа 10-11», Тематические тесты и зачеты.
- Л.С. Атанасяна и др. «Геометрия, 10-11», 10 класс (базовый уровень 2 ч в неделю, всего 70 часов).

Литература

- 1. Настольная книга учителя математики. М.: ООО «Издательство АСТ»: ООО «Издательство Астрель», 2004.
- 2. Тематическое приложение к вестнику образования. №4, 2005.
- 3. Требования к оснащению образовательного процесса в соответствии с содержательным наполнением учебных предметов федерального компонента государственного стандарта общего образования.
- 4. Мордкович А.Г. Алгебра и начала анализа. 10 кл.: В двух частях. Ч. 1: Учебник для общеобразовательных учреждений (профильный уровень) / А.Г. Мордкович, П.В. Семенов. М.: Мнемозина, 2005.
- 5. Алгебра и начала анализа. 10 кл.: В двух частях. Ч. 2: Задачник для общеобразовательных учреждений (профильный уровень) / А.Г. Мордкович, Л.О. Денищева, Л.И. Звавич, Т.А. Корешкова, Т.Н. Мишустина, А.Р. Рязановский, П.В. Семенов; под ред. А.Г. Мордковича. М.: Мнемозина, 2005.

Пояснительная записка

Рабочая программа по математике для 10-11 классов составлена на основе федерального компонента государственного стандарта среднего (полного) общего образования профильного уровня; федерального базисного учебного плана; примерной программы среднего (полного) общего образования по математике профильного уровня; примерных авторских программ по алгебре и началам математического анализа для 10-11 классов (авторы И.И. Зубарева, А.Г. Мордкович) и по геометрии для 10-11 классов общеобразовательных учреждений (составитель программы Т.А. Бурмистрова).

В профильном курсе содержание образования, представленное в основной школе, развивается в следующих направлениях:

- систематизация сведений о числах; формирование представлений о расширении числовых множеств от натуральных до комплексных как способе построения нового математического аппарата для решения задач окружающего мира и внутренних задач математики; совершенствование техники вычислений;
- развитие и совершенствование техники алгебраических преобразований, решения уравнений, неравенств, систем;
- систематизация и расширение сведений о функциях, совершенствование графических умений; знакомство с основными идеями и методами математического анализа в объеме, позволяющем исследовать элементарные функции и решать простейшие
- развитие представлений о вероятностно-статистических закономерностях в окружающем мире;
- совершенствование математического развития до уровня, позволяющего свободно применять изученные факты и методы при решении задач из различных разделов курса, а также использовать их в нестандартных ситуациях;
- формирование способности строить и исследовать простейшие математические модели при решении прикладных задач, задач из смежных дисциплин, углубление знаний об особенностях применения математических методов к исследованию процессов и явлений в природе и обществе.

Пели

Изучение математики в старшей школе на профильном уровне направлено на достижение следующих целей:

- формирование представлений об идеях и методах математики; о математике как универсальном языке науки, средстве моделирования явлений и процессов;
- **овладение** устным и письменным математическим языком, математическими знаниями и умениями, необходимыми для изучения школьных естественно-научных дисциплин, для продолжения образования и освоения избранной специальности на современном уровне;
- развитие логического мышления, алгоритмической культуры, пространственного воображения, развитие математического мышления и интуиции, творческих способностей на уровне, необходимом для продолжения образования и для самостоятельной деятельности в области математики и ее приложений в будущей профессиональной деятельности;
- воспитание средствами математики культуры личности: знакомство с историей развития математики, эволюцией математических идей, понимание значимости математики для общественного прогресса.

Общеучебные умения, навыки и способы деятельности

- В ходе изучения математики в профильном курсе старшей школы учащиеся продолжают овладение разнообразными способами деятельности, приобретают и совершенствуют опыт:
- проведения доказательных рассуждений, логического обоснования выводов, использования различных языков математики для иллюстрации, интерпретации, аргументации и доказательства;
- решения широкого класса задач из различных разделов курса, поисковой и творческой деятельности при решении задач повышенной сложности и нетиповых задач;
- планирования и осуществления алгоритмической деятельности: выполнения и самостоятельного составления алгоритмических предписаний и инструкций на математическом материале; использования и самостоятельного составления формул на основе обобщения частных случаев и результатов эксперимента; выполнения расчетов практического характера;

- построения и исследования математических моделей для описания и решения прикладных задач, задач из смежных дисциплин и реальной жизни; проверки и оценки результатов своей работы, соотнесения их с поставленной задачей, с личным жизненным опытом:
- самостоятельной работы с источниками информации, анализа, обобщения и систематизации полученной информации, интегрирования ее в личный опыт.

Требования к уровню подготовки десятиклассников

- В результате изучения математики на профильном уровне ученик должен
- знать / понимать:
- значение математической науки для решения задач, возникающих в теории и практике; широту и ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;
- идеи расширения числовых множеств как способа построения нового математического аппарата для решения практических задач и внутренних задач математики;
- значение идей, методов и результатов алгебры и математического анализа для построения моделей реальных процессов и ситуаций;
- универсальный характер законов логики математических рассуждений, их применимость в различных областях человеческой деятельности;
- различие требований, предъявляемых к доказательствам в математике, естественных, социально-экономических и гуманитарных науках, на практике;
- вероятностный характер различных процессов и закономерностей окружающего мира.
 - Числовые и буквенные выражения
- уметь:
- выполнять арифметические действия, сочетая устные и письменные приемы, применение вычислительных устройств; пользоваться оценкой и прикидкой при практических расчетах;
- применять понятия, связанные с делимостью целых чисел при решении математических задач;
- выполнять действия с комплексными числами, пользоваться геометрической интерпретацией комплексных чисел, в простейших случаях находить комплексные корни уравнений с действительными коэффициентами;
- – проводить преобразование числовых и буквенных выражений.
- использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
- практических расчетов по формулам, используя при необходимости справочные материалы и простейшие вычислительные устройства.
 - Функции и графики

- уметь:
- определять значение функции по значению аргумента при различных способах задания функции;
- строить графики изученных функций, выполнять преобразование графиков;
- описывать по графику и по формуле поведение и свойства функций;

- решать уравнения, системы уравнений, неравенства; используя свойства функций и их графические представления;
- использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
- описания и исследования с помощью функций реальных зависимостей, представления их графически; интерпретации графиков реальных процессов.
 - Начала математического анализа
- уметь:
- находить сумму бесконечно убывающей геометрической прогрессии;
- вычислять производные элементарных функций, применяя правила вычисления производных, используя справочные материалы;
- исследовать функции и строить их графики с помощью производной;
- решать задачи с применением уравнения касательной к графику функции;
- решать задачи на нахождение наибольшего и наименьшего значения функции на отрезке;
- использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
- решения прикладных задач, в том числе на наибольшие и наименьшие значения с применением аппарата математического анализа.
 - Уравнения и неравенства
- уметь:
- решать тригонометрические уравнения;
- доказывать несложные неравенства;
- находить приближенные решения уравнений и их систем, используя графический метод;
- решать уравнения, неравенства и системы с применением графических представлений, свойств функций, производной;
- использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
- построения и исследования простейших математических моделей.
 - Элементы комбинаторики, статистики и теории вероятностей
- уметь:
- решать простейшие комбинаторные задачи методом перебора, а также с использованием известных формул, треугольника Паскаля; вычислять коэффициенты бинома Ньютона по формуле и с использованием треугольника Паскаля;
- использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
- анализа реальных числовых данных, представленных в виде диаграмм, графиков;
 для анализа информации статистического характера.

ТРЕБОВАНИЯ К УРОВНЮ ПОДГОТОВКИ десятиклассников по геометрии

- В результате изучения математики на базовом уровне ученик должен
- знать/понимать

- значение математической науки для решения задач, возникающих в теории и практике; широту и в то же время ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;
- значение практики и вопросов, возникающих в самой математике для формирования и развития математической науки; историю возникновения и развития геометрии; универсальный характер законов логики математических рассуждений, их применимость во всех областях человеческой деятельности.

уметь

- распознавать на чертежах и моделях пространственные формы; соотносить трехмерные объекты с их описаниями, изображениями;
- описывать взаимное расположение прямых и плоскостей в пространстве, аргументировать свои суждения об этом расположении;
- анализировать в простейших случаях взаимное расположение объектов в пространстве;
- изображать основные многогранники; выполнять чертежи по условиям задач;
- строить простейшие сечения куба, призмы, пирамиды;
- - решать планиметрические и простейшие стереометрические задачи на нахождение геометрических величин (длин, углов, площадей);
- использовать при решении стереометрических задач планиметрические факты и методы;
- проводить доказательные рассуждения в ходе решения задач;
- использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
- исследования (моделирования) несложных практических ситуаций на основе изученных формул и свойств фигур;
- вычисления площадей поверхностей пространственных тел при решении практических задач, используя при необходимости справочники и вычислительные устройства.

Место предмета в базисном учебном плане

Согласно Федеральному базисному учебному плану для образовательных учреждений Российской Федерации для обязательного изучения математики на этапе основного общего образования отводится **не менее** 420 ч из расчета 6 ч в неделю.

Содержание образовательной программы «Алгебра и начала анализа» 10 класс (профильный уровень) по УМК А.Г. Мордковича и др.

I вариант – 4 ч в неделю (140 ч в год)

Глава 1. Действительные числа. (12)

§1. Натуральные и целые числа. (3)

Делимость целых чисел. Деление с остатком. <u>Сравнения.</u> Признаки делимости. Простые и составные числа. НОД. НОК. *Основная теорема алгебры* Решение задач с целочисленными неизвестными.

§2. Рациональные числа. (1)

Перевод бесконечной периодической десятичной дроби в обыкновенную

§3. Иррациональные числа. (2)

Понятие иррационального числа

§4. Множество действительных чисел. (1)

Действительные числа. Числовая прямая. Числовые неравенства и их свойства. Числовые промежутки. Аксиоматика действительных чисел. Доказательства неравенств. Неравенство о среднем арифметическом и среднем геометрическом двух чисел.

§5. Модуль действительного числа. (2)

Контрольная работа №1.

§6. Метод математической индукции. (2)

Глава 2. Числовые функции. (9)

§7. Определение числовой функции и способы ее задания. (2)

Функции. Область определения и множество значений. График функции. Построение графиков функций, заданных различными способами.

§8. Свойства функций. (3)

Свойства функций: монотонность, четность и нечетность, выпуклость, ограниченность, непрерывность. Графическая интерпретация. Примеры функциональных зависимостей в реальных процессах и явлениях.

§9. Периодические функции. (1)

Периодичность функций.

§10. Обратная функция. (2)

Сложная функция (композиция функций). Взаимно обратные функции. Область определения и область значений обратной функции. График обратной функции. Нахождение функции, обратной данной.

Контрольная работа №2.

Глава 3. Тригонометрические функции. (24)

- §11. Числовая окружность. (2)
- §12. Числовая окружность на координатной плоскости. (2)
- §13. Синус и косинус. Тангенс и котангенс. (3)

Синус, косинус, тангенс, котангенс произвольного угла. Радианная мера угла.

§14. Тригонометрические функции числового аргумента. (2)

Синус, косинус, тангенс, котангенс числа. Основные тригонометрические тождества.

- §15. Тригонометрические функции углового аргумента. (1)
- §16. Функции $y = \sin x$, $y = \cos x$, их свойства и графики, периодичность, основной период.

Контрольная работа №3.

- §17. Построение графика функции $y = m \cdot f(x)$. (2)
- §18. Построение графика функции $y = f(k \cdot x)$. (2)

Преобразование графиков: параллельный перенос, симметрия относительно осей координат, симметрия относительно начала координат, симметрия относительно прямой y = x. Растяжение и сжатие вдоль осей координат.

- §19. График гармонического колебания. (1)
- §20. Функции y = tg x, y = ctg x, их свойства и графики. (2)
- §21. Обратные тригонометрические функции, их свойства и графики. (3)

Глава 4. Тригонометрические уравнения. (10)

- §22. Простейшие тригонометрические уравнения и неравенства. (4)
- §23. Методы решения тригонометрических уравнений. (4)

Простейшие тригонометрические уравнения. Решение тригонометрических уравнений. *Простейшие тригонометрические неравенства*. Арксинус, арккосинус, арктангенс, арккотангенс числа.

Контрольная работа №4.

Глава 5. Преобразование тригонометрических выражений. (21)

- §24. Синус и косинус суммы и разности аргументов. (3)
- §25. Тангенс суммы и разности аргументов. (2)
- §26. Формулы приведения. (2)
- §27. Формулы двойного аргумента. Формулы понижения степени. (3)

Синус и косинус двойного угла. Формулы половинного угла. Выражение тригонометрических функций через тангенс половинного аргумента.

- §28. Преобразование суммы тригонометрических функций в произведение. (3)
- §29. Преобразование произведения тригонометрических функций в сумму. Преобразование тригонометрических выражений. (2)
- §30. Преобразование выражения $A \cdot \sin x + B \cdot \cos x$ к виду $C \cdot \sin (x + t)$
- §31. Методы решения тригонометрических уравнений. (3)

Контрольная работа №5.

Глава 6. Комплексные числа. (9)

§32. Комплексные числа и арифметические операции над ними. (2)

Действительная и мнимая часть. Комплексно сопряженные числа. Модуль и аргумент комплексного числа.

§33. Комплексные числа и координатная плоскость. (1)

Геометрическая интерпретация комплексных чисел.

§34. Тригонометрическая форма записи комплексного числа. (2)

Арифметические действия над комплексными числами в разных формах записи.

- §35. Комплексные числа и квадратные уравнения. (1)
- §36. Возведение комплексного числа в степень. Извлечение кубического корня из комплексного числа. (2)

Возведение в натуральную степень (формула Муавра). Основная теорема алгебры.

Контрольная работа №6.

Глава 7. Производная. (28)

- §37. Числовые последовательности. (2)
- §38. Предел числовой последовательности. (2)

Понятие о пределе последовательности. Существование предела монотонной ограниченной последовательности. Длина окружности и площадь круга как пределы последовательностей. Бесконечно убывающая геометрическая прогрессия и ее сумма. Теоремы о пределах последовательностей. Переход к пределам в неравенствах.

§39. Предел функции. (2)

Понятие о непрерывности функции. Основные теоремы о непрерывных функциях. Понятие о пределе функции в точке. Поведение функций на бесконечности. Асимптоты.

§40. Определение производной. (2)

Понятие о производной функции, физический и геометрический смысл производной.

§41. Вычисление производных. (3)

Производные суммы, разности, произведения и частного. Производные основных элементарных функций.

§42. Дифференцирование сложной функции. Дифференцирование обратной функции. (2)

Производные сложной и обратной функции.

§43. Уравнение касательной к графику функции. (3)

Контрольная работа №7.

§44. Применение производной для исследования функций. (3)

Применение производных при решении уравнений и неравенств.

§45. Построение графиков функций. (2)

Применение производной к исследованию функций и построению графиков.

Вторая производная и ее физический смысл.

§46. Применение производной для отыскания наибольших и наименьших значений величин. (4)

Использование производных при решении текстовых, физических и геометрических задач, нахождении наибольших и наименьших значений. Примеры использования производной для нахождения решения в прикладных, в том числе социально-экономических, задачах.

Контрольная работа №8.

Глава 8. Комбинаторика и вероятность. (7)

§47. Правило умножения. Комбинаторные задачи. Перестановки и факториалы. (2)

Формулы числа перестановок, сочетаний, размещений. Решение комбинаторных задач.

§48. Выбор нескольких элементов. Биномиальные коэффициенты. (2)

Формула бинома Ньютона. Свойства биномиальных коэффициентов. Треугольник Паскаля.

§49. Случайные события и их вероятность. (3)

Элементарные и сложные события. Рассмотрение случаев и вероятность суммы несовместных событий, вероятность противоположного события. Понятие о независимости событий. Вероятность и статистическая частота наступления события. Решение практических задач с применением вероятностных методов.

Табличное и графическое представление данных. Числовые характеристики рядов данных.

Геометрия

Введение (5 час).

Предмет стереометрии. Основные понятия стереометрии (точка, прямая, плоскость, пространство) и аксиомы стереометрии. Первые следствия из аксиом.

Параллельность прямых и плоскостей (19 часов, из них 2 часа контрольные работы, 1 час зачет).

Пересекающиеся, параллельные и скрещивающиеся прямые. Параллельность прямой и плоскости, признак и свойства. Угол между прямыми в пространстве. Перпендикулярность прямых.

Параллельность плоскостей, признаки и свойства. Параллельное проектирование. Изображение пространственных фигур. Тетраэдр и параллелепипед, куб. Сечения куба, призмы, пирамиды.

Перпендикулярность прямых и плоскостей (20 час, из них 1 час контрольная работа, 1 час зачет).

Перпендикулярность прямой и плоскости, признаки и свойства. Перпендикуляр и наклонная. Теорема о трех перпендикулярах. Угол между прямой и плоскостью. Расстояние от точки до плоскости. Расстояние от прямой до плоскости. Расстояние между параллельными плоскостями. Расстояние между скрещивающимися прямыми.

Перпендикулярность плоскостей, признаки и свойства. Двугранный угол, линейный угол двугранного угла. Площадь ортогональной проекции многоугольника.

Многогранники (12 часов, из них 1 час контрольная работа).

Понятие многогранника, вершины, ребра, грани многогранника. Развертка. Многогранные углы Выпуклые многогранники. Теорема Эйлера.

Призма, ее основание, боковые ребра, высота, боковая и полная поверхности. Прямая и наклонная призма. Правильная призма.

Пирамида, ее основание, боковые ребра, высота, боковая и полная поверхности. Треугольная пирамида. Правильная пирамида. Усеченная пирамида.

Симметрия в кубе, в параллелепипеде, в призме и пирамиде. Понятие о симметрии в пространстве (центральная, осевая и зеркальная). Примеры симметрий в окружающем мире.

Представление о правильных многогранниках (тетраэдр, куб, октаэдр, додекаэдр и икосаэдр).

Векторы в пространстве (7 часов, из них 1 час контрольная работа).

Понятие вектора в пространстве. Модуль вектора. Равенство векторов. Сложение и вычитание векторов. Коллинеарные векторы. Умножение вектора на число. Разложение вектора по двум неколлинеарным векторам. Компланарные векторы. Разложение вектора по трем некомпланарным векторам.

Повторение курса геометрии 10 класса (5 часов)

Литература

1. Настольная книга учителя математики. М.: ООО «Издательство АСТ»: ООО «Издательство Астрель», 2004.

3. . Мордкович А.Г. Алгебра и начала анализа. 10 кл.: В двух частях. Ч. 1: Учебник для общеобразовательных учреждений (профильный уровень) / А.Г. Мордкович, П.В. Семенов. – М.: Мнемозина, 2012.

5. Алгебра и начала анализа. 10 кл.: В двух частях. Ч. 2: Задачник для общеобразовательных учреждений (профильный уровень) / А.Г. Мордкович, Л.О. Денищева, Л.И. Звавич, Т.А. Корешкова, Т.Н. Мишустина, А.Р. Рязановский, П.В. Семенов; под ред. А.Г. Мордковича. – М.: Мнемозина, 2012.